
Elemental Computing
with the Element CXI ECA

Peter Athanas
Virginia Tech

Department of ECE
Blacksburg, Virginia

Peter.Athanas@VT.edu

Bruce Gladstone
Director of Early Access Programs

Element CXI
Milpitas, California

Bruce.Gladstone@ElementCXI.com

Abstract: The Element CXI Elemental Computing Architecture
(ECA) is a scalable, fully programmable platform for parallel
and distributed processing. The architecture is comprised of a
dynamically configurable fabric of heterogeneous elements—or
dataflow engines—that time-share operations in a token-based
data-driven flow. Computationally intensive tasks are
distributed across elements for maximum speed and parallelism,
while simple tasks time-share elements. This paper presents an
overview of the Elemental Computing paradigm and contrasts it
to contemporary FPGA-based reconfigurable computing flows.

Introduction
For two decades now, the field of reconfigurable
computing has offered a powerful model for high-
performance embedded computing. The foundation of
this model is ability to dynamically customize the
organization, functionality, and connectivity of an
underlying computational platform based upon the
computation at hand. In doing so, many benefits can be
achieved. Higher computational throughput is attained
through the realization of custom computational
pipelines. Lower power requirements are in theory
achieved through reduced circuit activity. Since a
computation is customized to a particular application
within a reconfigurable fabric, there is less overhead
associated with control logic as one would find in a
general-purpose processor. In addition, reconfigurable
computing also offers other advantages to certain classes
of problems, such as size and weight reduction, and
accelerated deployment times.

Until now, FPGAs have been the primary vehicle
for reconfigurable computing systems. Using a relatively
fine-grain RAM-based architecture, FPGAs exhibit a high
degree of flexibility. This flexibility, however, comes at a
high price in terms of computational density and power
efficiency. In theory, the dynamic nature of FPGAs can
be exploited to achieve greatly enhanced computational
density by "swapping out" otherwise idle circuitry
capabilities. In practice, however, FPGAs are used
primarily as "rapid prototyping" platforms, where the
computational task is statically configured for the lifetime
of the application, regardless of its usage duty cycle.
There are several reasons for this including (a) the
reconfiguration bandwidth in contemporary FPGAs is
relatively slow (several thousands to millions of clock
cycles), (b) the use-model for dynamic behavior is poorly
defined, and (c) run-time reconfiguration is not well

supported by the vendors in terms of tools and
documentation. Despite two decades of research and
development, there are only but a handful of mainstream
FPGA applications that exploit the full benefits of
reconfigurable computing.
 The Element CXI Elemental Computing
Architecture (ECA) is a reconfigurable computing
paradigm that is built on a data-flow computational model
that facilitates the creation of computationally dense and
power efficient applications. ECA devices can be applied
to many applications associated with communication
systems, networking, and multimedia applications.
Furthermore, the combination of power efficiency,
flexibility, and fast real-time reconfiguration make the
ECA well suited for software-defined radio systems. This
paper presents an overview of the elemental computing
concepts and computational model.

ECA Architecture
The Element CXI ECA is composed of a collection of
heterogeneous elements, or computational building
blocks, that can be dynamically chained to form specific
computing structures on demand. Elements can be
considered to be coarse-grain computational units in that
they provide functions ranging from complex multipliers
to fully capable RISC processors. The architecture favors
signal processing computations, yet is sufficiently flexible
to do well on applications beyond this focus. Elements
communicate through 16-bit buses, yet individual
buses can be combined to provide 32-bit and 64-bit
operations. Despite the emphasis on word-wide
computational pathways, the ECA does extremely well in
single bit-wide computations and operations. The coarser
granularity provides a substantial boost in power
efficiency and computational density when compared to
FPGAs. The advantages of coarser-grain architectures
have been clearly established in the literature and by other
devices in the marketplace [1].

The ECA provides a number of capabilities that
further distinguish it from conventional DSPs, GPUs, and
FPGAs. Each element in the ECA fabric can possess
several different contexts. Each context contains a full
configuration of the operation of the element. This allows
the computational core of an element to be shared with (or
bound to) different portions of the running application.
For example, one context for an element could be

responsible for a FIR filter tap computation, while another
context performs a polynomial computation. An element
can switch from one context to another transparently in a
single clock cycle. The mechanism for deciding to switch
from one context to another is most interesting. Unlike
FPGAs, where the algorithm designer must arduously and
manually floorplan and time-slice a multi-context
application, the decision to switch the context an element
within an ECA is performed automatically at run-time
with no design-time planning or intervention.
Furthermore, the decision made by one element to context
switch is independent of the other elements. In summary,
each element within an ECA array independently decides
on a cycle-by-cycle basis, what the next computation shall
be. This is a key capability that folds elegantly into the
computational model, presented in the next section.

The concept of incorporating context switching
within a reconfigurable device is instrumental in
improving both computational density and power
consumption. In regards to computational density, an
otherwise idle operator can be swapped out in favor of a
pending computation, vastly increasing the overall
number of operations performed in a device per clock
cycle. Non-active contexts remain completely static
eliminating all unnecessary activity, resulting in
significant power savings.

Elements are interconnected through a rich
hierarchical switching network. The network is dynamic
in that the connectivity between elements can change on a

clock-by-clock basis. Elemental interconnect is word-
based, and includes a broadcast capability so that a single
element can transmit to multiple destinations. The
flexible interconnect structure provides the close coupling
of resources needed by algorithms sensitive to feedback
or to next-iteration latencies [2]. Word-wide organization
of the device connectivity has a dramatic impact on
reducing power consumption when compared to FPGAs.
Furthermore, connectivity is fully deterministic, reducing
the need for doing complex compile-time timing closures.
All designs operate at the full rated speed of the ECA
device.

In addition to computational elements, there are
large amounts of distributed memory throughout the
ECA. These memory elements are instrumental in
keeping concurrent operations primed, and result in a
huge cross-sectional bandwidth in the ECA fabric. The
ECA memory elements also eliminate the need to use
extraneous resources to implement common storage
functions. Operations such as multi-dimensional scan
patterns, scatter/gather operations, FIFOs, and rendezvous
synchronization points are all inherent in the ECA fabric.
Distributing memory close to the elements adds a degree
of fault tolerance. Having one distributed memory fail
leaves others that can (dynamically) step in and maintain
operations.

Computing Model
The computational model of a device is the central theme
that binds software programmability to the hardware's
capabilities. In the ECA, an enhanced CSP dataflow
model1 is used [3]. Abstractly, valid data are tagged with
tokens as they move through the ECA fabric. All inputs
of all contexts of all elements in the system feature input
queues. Similarly, all contexts of all elements feature
queues for outgoing data. Tokens for a given
computation flow into input queues and remain there until
an element can fire and consume the tokens. A given
context for an element will fire if and only if (a) all
significant inputs for the context have tokens available,
and (b) there is room in the context's output queue for a
newly produced token(s). This model has a number of
distinct advantages:
1. The movement of data are governed by both forward

flow control (space availability in input queues) and
backpressure (space availability in output queues).
Because of this, data are never lost in the system due
to overflow or under-run conditions.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 Communicating Sequential Processes (CSP) model allows a system to
be described in terms of component processes that operate
independently, and interact with each other solely through message-
passing communication. The CSP model has a sound mathematical
foundation along with a wealth of contemporary tools and development
environments.	

	

Figure	 2:	 An	 illustration	 of	 how	 control-‐flow	 constructs	 are	 readily	
implemented	 in	 the	 ECA	 architecture.	 	 Here,	 an	 IF-‐Then-‐Else	
construct	 is	 formed	 satisfying	 the	 conditional:	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 if	 (x==3)	 {	 o	 =	 p[x+y]	 *3;	 }	 else	 {	 o	 =	 x-3;};	 o	 >>=	 2;	

 Element
Control

Input
Queues

2 x 8 x 16

2 x 8 x 16

Config
x8

2 x 8 x 16

E
L
E
M
E
N
T

Output
Queues

2 x 8 x 16

Inputs Outputs

	
Figure	 1:	 All	 ECA	 elements	 are	 wrapped	 to	 provide	 input	 and	
output	 queues	 and	 a	 multi-‐context	 configuration	 controller.	

2. Data rate conversions (e.g.,
as in multi-rate signal
processing) are performed
implicitly in the ECA fabric
requiring no additional
effort by the algorithm
designer.

3. If the inputs for a given
context are all available at
the same time, and there is
room for the output token
there is no queuing delay or
overhead, and the element
fires instantly. Similarly, an
output queue can be
bypassed if the destination
is free. These are important
factors in pipeline
computational efficiency.

An important consequence of
this and the core computing
model is that each context
"knows" if it can fire or not
based upon the above conditions. Because of this, the
decision to context switch an element is straightforward,
and is easily folded into the ECA hardware fabric.
 Another important consequence of this is the
concept of virtualization. The ECA hardware will have
only a finite number of elements within a given device;
however, the designer does not need to be burdened with
the physical limitations of the device. Instead,
applications can be created for the ECA that consist of
many more times the number of logical elements than
there are physical elements in the device. The hardware,
not the designer, will manage resource sharing at run-
time, not at compile-time. Furthermore, if the contexts
within the device are depleted, there are several RISC
processor elements distributed throughout the device that
can also intervene in the run-time configuration of the
device in a distributed random-access manner. Together,
these factors will likely boost productivity significantly
for dense complex designs.

The computational core of most signal
processing kernels are readily expressed as dataflow
computations, which makes the mapping to ECA
primitives easy. Most signal processing tasks also have
some degree of control-flow aspects to them, which are
difficult to express in conventional dataflow primitives.
The architects of the ECA foresaw this issue and crafted
the element repertoire to readily express common control-
flow constructs. Conditionals (if-then-else) and looping
constructs (for, do, while) are easily instanced in an
application (refer to Figure 2). Furthermore, complex
control mechanisms can be easily implemented in the
RISC-based elements.

Conclusion
Elemental computing is a parallel, distributed, data-flow
paradigm. Data transfers in every stage in a task are
reliable and inherently controlled within the ECA fabric,
where the complexity is hidden from the user. As a
consequence, portions of an application can be relocated
seamlessly throughout the fabric. Unlike FPGAs,
applications and pieces of applications can be mapped and
remapped on a clock cycle by clock cycle basis if needed.

For academicians, the ECA architecture provides
a means of exploring many interesting research issues that
cannot otherwise be investigated with other technologies,
such as FPGAs and DSPs. Some of these issues include
(a) true run-time reconfiguration and hardware
virtualization, (b) resiliency and fault recovery, and (c)
hardware operating systems. All of these factors
will play an important role in the future of high-
performance embedded computation, and will encourage
designers to rethink how contemporary media devices,
radios, and networks are made.
	
References
[1] R. Hartenstein, “Coarse grain reconfigurable architecture,”
Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, Yokohama, Japan, pp. 564 - 570 , 2001
[2] S. Kelem, B. Box, S. Wasson, R. Plunkett, J. Hassoun, C.
Phillips, “An Elemental Computing Architecture for SD Radio,”
Proc. of 2007 Software Defined Radio Technical Conference
and Product Exposition, Denver, Colorado, November. 2007.
[3] C. Hoare, "Communicating sequential processes,"
Communications of the ACM 21 (8): 666–677, 1978.
[4] C. Maxfield, “Dynamically-reconfigurable Elemental
Computing Arrays (ECAs),”
http://www.pldesignline.com/202803397, November 2007.	

	
Figure	 3:	 An	 example	 ECA	 application	 (a	 QPSK	 transmitter)	 built	 from	 elements	 (yellow	 boxes)	

expressed	 as	 a	 data	 flow	 graph	 within	 the	 Ptolemy	 design	 environment.	

